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Abstract

The abacus is a well-known calculating tool with a limited number of
placeholders for digits of operands and results. Given a number of rods n
of the abacus, a chosen basis of the number system and the first operand
a, this paper deals with the possible values of the other operand b in the
four basic arithmetic operations performed with integers on the abacus.
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1 Introduction

The abacus is an ideal tool to demonstrate the basic arithmetic operations in
various number systems. This, probably first and definitely the most well–known
calculating tool is still widely used and has survived through centuries due to
its simplicity, adaptability and creativity which it provides. Certain historical
facts can be found in [3] and in an interesting manuscript [2].

We take a moment to recall that every abacus consists of a frame with
several rods, with equal number of beads on each rod (actually, there is one
rod with few beads less on the Russian abacus, but that will not be of much
importance for us). Calculations are made by moving beads, representing digits
in that way, while beads on a single rod represent a single digit. Every basic
arithmetic operation can be carried out on the abacus and is performed very
similarly to the standard pencil and paper algorithm. In fact, every pencil and
paper algorithm can be transferred to abacus, after possible slight modifications.
Despite known ways of making such modifications, users may harmonize the
calculating procedure according to their requirements and wishes (this property
also develops a higher level of creativity).

The number systems representable on an abacus depend on the number of
beads on a rod. For instance, the basis of a number system representable on
a traditional Chinese abacus is less than or equal to 16, while such basis on a
traditional Japanese abacus is not greater than 10. From now on, when working
with the numbers in base B, we assume that there are at least B − 1 beads on
each rod.

It is worth pointing out that the abacus has numerous pedagogical applica-
tions and therefore it is widely used as a teaching tool, especially in learning
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arithmetic, mental calculation and manipulating with various number systems.
Also, some special sorts of abacus are still used by the blind individuals as a
decisive help in learning arithmetic. Some of the above mentioned subjects are
described in [5] and [6]. For a deeper discussion we also refer the reader to [1].

Besides many advantages, a major drawback while calculating on abacus is
the insufficiency of space needed for implementation of some calculating proce-
dures. A problem that naturally arises is to find explicit upper bounds for a
given arithmetic operation, on an abacus with arbitrary (but fixed) number of
rods and the fixed first operand. Since abacus allows computation in various
number systems, this problem can be generalized by considering operands in
any basis (assuming that they are representable on the rods of the abacus).
Surprisingly, this was not done before except by the second–named author et
al in [4] for basis 10, where division was considered only in the special case of
a traditional Chinese 13–rod abacus. Since on each abacus a single rod can be
used to represent at most one digit, we will not specify the type of the abacus
that we use. Also, our inquiry could be viewed as a problem of determining
a minimal space required for some integer computations, which seems to be
of independent interest, in some aspects of the number theory and computer
science.

For the sake of completeness, before deriving the constraints on some basic
arithmetic operation, we shortly describe its usage on the abacus. We shall
describe all the considered operations under the natural assumption that the
person making the calculations is not memorizing any of the data.

Given the number of rods on an abacus and the first operand a, for each
basic arithmetic operation we have considered the maximal values of the second
operand b such that it is performable on our abacus. While the maximal values
for b are quite obvious in the case of addition and subtraction, they are not
so obvious (although relatively simple to prove) for multiplication. The case
of division is by far the most complicated case, with many special cases and
answers that are neither obvious nor simple to formulate. The most of the paper
is devoted to that problem, in which appear some extremely non–trivial cases
of numbers with so–called critical number of digits, which have to be studied
separately. We have completely solved the problem of finding the maximal
value of the divisor b for a with at most Nn digits, Nn being the smallest
number of digits for a such that a cannot be divided by all smaller divisors on
the n-rod abacus. Although there are still several open questions to be solved,
the most usual 13-rod case, which has turned up several times as a specially
complicated, has been completely solved. It is expected that the remaining
situations can be solved in pretty much the same way. This needs longer case–
by–case examination, and we plan to write it elsewhere.

We now describe the content of the paper in more detail. In the second
section we recall some basic notations that will be used through the paper.
In the third section we briefly sketch addition and subtraction on the abacus
and, as a motivation, obtain explicit bounds for this operations. Section 4 is
devoted to the study of the limitations of multiplication using abacus, with
special reference to taking squares and arbitrary powers. Section 5 provides a
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detailed exposition of the limitations which arise during the division.

2 Notation

The base of the number system we are working in shall be denoted by B (B ∈ N,
B > 1); accordingly, the digits of a number represented in the base B number
system are 0, 1, . . . , B − 1. The number of digits of a number a in base B shall
be denoted by δB(a). If a number a is represented in the base B number system,
the digits shall be denoted by ai, i = 0, 1, . . . ,m = δB(a)− 1 and we shall write

a = (amam−1 . . . a2a1a0)B .

If a number is represented by its digits without reference to base it is understood,
as usual, that the chosen base is 10. We shall frequently make use of the fact
that for a number a that has δB(a) digits with respect to base B the following
inequalities hold:

BδB(a)−1 ≤ a ≤ BδB(a) − 1.

The number of the abacus rods shall be denoted by n (n ∈ N). Note that a
number a is representable in base B on an abacus with n rods if (and only if)
δB(a) ≤ n. Throughout the text we use the phrases ”a can be multiplied with
b” and ”a can be divided by b” in the sense that the corresponding arithmetical
operation is feasible on the abacus for a given number n of rods (i.e. under ”a
can be divided by b” we don’t mean that a is a multiple of b).

3 Addition and subtraction

Let a and b be two positive integers. In the case of the calculation of a− b we
suppose that b ≤ a. For adding a + b or subtracting a − b one starts with the
number a registered on the abacus; we suppose that it is registered in such a
way that the last digit of a is represented on the last (rightmost) rod of our
abacus. Starting from right, one adds or subtracts the corresponding digit of b
by moving the corresponding number of beads on the rod. Say we are adding
the i-th digits of a and b i.e. performing addition ai−1 + bi−1 on the i-th rod
from the right. If the sum ai−1 +bi−1 is less than B, we just move bi−1 beads to
the ai−1 beads and then move to the next digit to the left. Otherwise, as soon
as we have B beads moved to the bottom of the rod, we remove them and then
on the same rod we represent bi − ai and add 1 to the digit represented on the
next rod to the left. Addition is illustrated in Figure 1.

When subtracting bi from ai, if ai ≥ bi the operation is obvious. Otherwise
one has to remove one bead from the next left rod and on the i-th rod the digit
(ai +B)− bi is represented.

The proof of the following proposition is elementary.
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Figure 1: Addition on the abacus (base B = 8, a = (70156)8, b = (2714)8,
a+ b = (73072)8).

Proposition 1 Given the number of rods n and a number a ∈ N representable
on the abacus, then the largest number b ∈ N for which it is possible to calculate
a+ b is

bmax = Bn − 1− a.

The largest number b ∈ N for which it is possible to calculate a− b is bmax = a.

4 Multiplication

The multiplication procedure on the abacus is similar to the algorithm that is
used in paper calculations. The main difference in the algorithm is that the
first factor a is sequentially multiplied with digits of the second factor b starting
with the rightmost digit and the results are added. This ensures we don’t have
to plan ahead how many columns we need for the product a · b. In order to keep
the calculation neat we shall reserve two columns of the abacus to separate the
factors and the second factor from the result (we can imagine these two empty
columns represent the symbols · and =). Secondly, we suppose that we need
to represent both factors a and b on the abacus so the user doesn’t need to
memorize any of them. We shall suppose that we write a and b with the empty
columns on the left side of the abacus.

Before we continue with the limitations of the multiplication using the abacus
we have to describe the algorithm in detail. The first factor a is first multiplied
by the last digit of the second factor b. This is a multiplication of a by a
single-digit number and is performed right to left and the result is represented
on the abacus starting from the rightmost column to the left; whenever we
have to carry a digit because the multiplication of digits resulted in a number
greater or equal to the base B we perform the corresponding addition. After the
multiplication of a with the last digit of b is completed, we continue sequentially
with the other digits of b (right to left), every time positioning the last digit
of this partial result one place more to the left and adding it to the previously
obtained partial product. The algorithm is illustrated in Figure 2.

Considering the algorithm, it is obvious that in order to be able to perform
the multiplication ab one needs an abacus with (at least) 2 + δB(a) + δB(b) +
δB(ab) rods.

Given a number a, observe that if it cannot be multiplied by 1, then it cannot
be multiplied by any larger number b. So, a can be multiplied on the abacus if
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Figure 2: Multiplication on the abacus (base B = 9, a = (132)9, b = (48)9,
ab = (6567)9).

it can be multiplied at least by 1. To multiply a by 1 we need δB(a) columns
for a, one for 1, two additional separating columns and δB(a) columns for the
result a ·1 = a. Altogether, we need 2δB(a)+3 columns. Consequently, we have
proven

Proposition 2 A number a can be multiplied on an abacus with n rods if

n ≥ 2δB(a) + 3,

i.e. if a has at most

⌊
n− 3

2

⌋
digits.

In particular, it is not possible to multiply any numbers on an abacus with
less than 5 rods. On the usual 13-rod abacus one cannot multiply a number
having 6 or more digits with any other number.

Now suppose that a has at most

⌊
n− 3

2

⌋
digits. What is the largest number

b that a can be multiplied with? To answer this question first we shall determine
the maximal number k of digits that b can have. If a can be multiplied with
any k-digit number, then it can be multiplied by the smallest k-digit number
Bk−1. Note that δB(aBk−1) = k − 1 + δB(a), so 2k ≤ n − 1 − 2δB(a). Thus,
k =

⌊
n−1
2

⌋
− δB(a) is the maximal number of digits the second factor can

have. The following theorem describes the constraints which arise during the
multiplication.

Theorem 1 Let n be the number of rods on the abacus and a be a number such

that δB(a) ≤
⌊
n− 3

2

⌋
. Then:

(a) if n is odd, a can be multiplied on the abacus with all numbers not greater

than

⌊
B

n−3
2 − 1

a

⌋
;
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(b) if n is even, a can be multiplied on the abacus with numbers not greater than
B

n
2−1−δB(a) − 1.

Proof. If n is odd, then k = n−1
2 − δB(a), so multiplication of a with a k-digit

number b requires n or n + 1 columns (2 separating columns, δB(a) columns
for a, k columns for b and δB(a) + k = n−1

2 or δB(a) + k − 1 = n−3
2 columns

for ab). Accordingly, the upper limit for b is the largest number such that the
product ab has δB(a) +k−1 = n−3

2 digits. That means that the largest feasible

product is B
n−3
2 − 1, i.e., b ≤ B

n−3
2 −1
2 . Thus we have proven case (a). For case

(b), the situation is simpler: we need 2 columns for separation purposes, δB(a)
columns for a, k = n−2

2 − δB(a) = n
2 − 1 − δB(a) columns for b and n

2 − 1 or
n
2 − 2 columns for ab. That makes altogether n or n − 1 columns, so we can
calculate the product of a with any k-digit number b. It follows that the upper
limit for b is the largest k-digit number Bk − 1 = B

n
2−1−δB(a) − 1. �

Note that we can significantly increase the maximal feasible number of digits
of the second factor if we allow its digits to be sequentially deleted during the
computation. Namely, since we are multiplying the first factor a with the second
factor’s digits right to left, as soon as we have completed the multiplication of
a with a digit of the second factor, we can delete this digit and use the column
of the deleted digit as the separation column between b and ab.

In the same way as before, we obtain the following theorem:

Theorem 2 Let n be the number of rods on the abacus and a be a number such

that δB(a) ≤
⌊
n− 3

2

⌋
. Let us suppose the modified multiplication procedure is

to be used, i.e. in each calculation step after multiplying a with a digit of b the
column of b containing that digit is cleared and used as the separation column
between b and the result. Then a can be multiplied on the abacus with numbers

up to

⌊
Bn−3−δB(a) − 1

a

⌋
.

5 Division

The algorithm of division a : b on the abacus is also performed similarly to
the pencil-and-paper algorithm. Obviously it is not interesting to consider the
division a : b in case a < b, so in all of the following we suppose that a ≥ b. We
start by representing a and b on the leftmost rods of the abacus. In each step
we determine one digit of the integer quotient. After the digit is determined
we have to calculate the partial product, i.e. the product of this digit with b,
and represent it on the rightmost columns of our abacus. Then we subtract
this partial product from a (this can be done in the columns where a was
represented in the beginning). Accordingly, in each step of the division we need
δB(a) columns on the left to represent a (or the current remainder obtained
by sequentially subtracting the previous partial products), δB(b) columns to
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Figure 3: Division on the abacus (base B = 10, a = 563, b = 24, q = ba : bc = 23
and the remainder r = 11).

represent b, and columns for the currently known digits of the integer quotient
q = ba : bc and columns for the present partial product. To keep the calculations
neat, we shall suppose that three columns shall be used for separation purposes
(one separating a from b and thus representing the symbol :, one separating b
from the quotient and thus representing the symbol = and one separating the
quotient from the partial product). The algorithm is illustrated in Figure 3.

The following lemma contains well-known results; both statements are simple
consequences of the equation stated in the introductory section about notation.

Lemma 1 (a) The integer quotient q = ba : bc has either δB(a) − δB(b) or
δB(a)− δB(b) + 1 digits.
(b) The product of a number b with a one digit number and thus every nonzero
partial product in the calculation of a : b has δB(b) or δB(b) + 1 digits.

A simple, but important, observation is contained in the following lemma:

Lemma 2 If the abacus allows enough space to represent the last nonzero par-
tial product, then it is also possible to represent all the previous partial products.

Proof. The last nonzero partial product is the product of the last nonzero
digit from q with b. If this product is representable on the abacus, the previous
was also representable since it has the same number of digits or one more, and
there was one less digit of q determined. Inductively we conclude that all the
previous steps could be performed. �

First we shall, for a given a, determine when it is not possible to divide it by
any b and vice versa, for a given b when it cannot be a divisor for any dividend
a. In all of the following we suppose that we need one column for a zero partial
product.

Proposition 3 A number a cannot be a dividend on an abacus with n rods if

n < 4 + 2δB(a).

A number b cannot be a divisor on an abacus with n rods if

n < 4 + 3δB(b).
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Proof. For a given a the most favorable situation we obtain when b is such
that the quotient has δB(a)− δB(b) digits and all but the first partial products
are zero (i.e. all but the first digit of the quotient are zero) and thus we need
only one column to represent these partial products. In such a case we need

Na,b,min = 3 + δB(a) + δB(b) + δB(a)− δB(b) + 1 = 2δB(a) + 4

columns. Consequently, a cannot be divided by any b if n < 2δB(a) + 4 .
For a given b the most favorable situation we obtain when a = b since and in

this case we need only one step that uses 3+δB(a)+δB(b)+1+δB(b) = 3δB(b)+4
columns. This proves the second statement. �

It follows that on abaci with less than seven rods one cannot divide any
numbers, so in all of the following we shall suppose n ≥ 7.

In the rest of the paper we shall deal with the following question: given a
number a, what is the largest number b such that it is possible to calculate
a : b on a n-rod abacus? Such a b shall be denoted by bmax(a). Although the
question is simple, the answer shall be quite nontrivial to prove. Because of

the previous proposition we shall consider only a with at most

⌊
n− 4

2

⌋
digits.

For example, on a 13-rod abacus one cannot divide a number with five or more
digits (in any base) with any other number.

The maximal number of rods needed for a division a : b is

Na,b,max = 3+δB(a)+δB(b)+δB(a)−δB(b)+1+δB(b)+1 = 2δB(a)+δB(b)+5.

Since δB(b) ≤ δB(a), we conclude that Na,b,max is at most 3δB(a) + 5, and this
can happen only if b has the same number of digits as a. But, if this is the case
the quotient has to have only one digit and the one and only partial product
cannot be greater than a, thus it has the same number of digits as a and b and
we need only 3δB(a) + 4 columns. On the other side, if δB(b) < δB(a) then
Na,b,max < 3δB(a) + 5, so in all cases we need at most 3δB(a) + 4 columns for
the division of a given a by any b. Consequently, if 3δB(a) + 4 ≤ n, then a can
be divided by all b ≤ a. We summarize this as

Proposition 4 If a has at most

⌊
n− 4

3

⌋
digits, then it is possible to calculate

a : b on a n-rod abacus for all b ≤ a and bmax(a) = a.

For example, on a 13-rod abacus every number with three digits can be
divided by all numbers not greater than it and it is the smallest number of rods
which allows a three-digit dividend to be divided by any smaller divisor. On a
7-rod abacus all quotients of two one-digit numbers can be calculated.

The previous two propositions suggest that there is a possibility (and un-
fortunately, it occurs) that there are specific numbers of digits k, depending on
n, of a dividend such that some of k-digit dividends cannot be divided by all
smaller divisors. Such numbers of digits k are called critical. Critical numbers
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of digits are those greater than

⌊
n− 4

3

⌋
and not greater than

⌊
n− 4

2

⌋
, i.e.

there are c(n) such critical numbers of digits, where c : N \ {1, 2, 3, 4, 5} → N0

is the function defined by

c(n) =

⌊
n− 4

2

⌋
−
⌊
n− 4

3

⌋
.

Checking for all possible remainders of the division of n by 6 it is easy to
show that

c(n+ 1) =

 c(n)− 1, n ≡ 0(mod 6)
c(n) + 1, n ≡ 5(mod 6)
c(n), otherwise

The largest value n for which c(n) = 1 (i.e. the largest number of rods for which
there is only one critical number of digits for a dividend) is 13. As n increases
the situation becomes more complicated. Let us for each n denote the smallest
critical number of digits of a dividend a by Nn, i.e.

Nn = 1 +

⌊
n− 4

3

⌋
.

Note that:

Nn =

{
m− 1, n = 3m
m, n = 3m+ 1 or n = 3m+ 2

(1)

Since there are no critical numbers of digits for n = 7, we shall now restrict
ourself to abaci with n > 7 rods.

Lemma 3 Let n ≥ 8.
If n is odd, every number a with a critical number of digits can be divided

by at least one number not greater than a.
If n is even, every number a with less than the maximal critical number of

digits, i.e. with δB(a) <
⌊
n−4
2

⌋
, can be divided by at least one number not greater

than a.

Proof. Note first that for every a the division of a by 1 requires 5 + 2δB(a)
columns.

If n = 2l + 1 is odd and Nn < δB(a) ≤
⌊
n−4
2

⌋
, then 5 + 2δB(a) ≤ 5 +

2
⌊
2l+1−4

2

⌋
= 5 + 2(l− 2) = 2l+ 1 = n columns, i.e. a can be divided at least by

1.
Consider now even n = 2l, n ≥ 8. Now, 5+2δB(a) ≤ 5+2

⌊
2l−4
2

⌋
= 2l+1 =

n+ 1. Thus, if δB(a) <
⌊
n−4
2

⌋
the division of a by 1 is possible. Consequently,

of all numbers a with a critical number of digits only those with
⌊
n−4
2

⌋
digits

cannot be divided by 1, and this happens only for even n. �

Let now n be even and δB(a) =
⌊
n−4
2

⌋
. Since the least possible number of

columns for a division of a by some b is Na,min = 4 + 2δB(a) = n, if there is
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no b such that the division needs Na,min columns, then a cannot be divided
by any b on an abacus with n rods. Since the first step of the division a : b
by any b needs at least 4 + δB(a) + 2δB(b) columns and this must not exceed
n = 4 + 2δB(a), we get the following condition on the possible number of digits

for the divisor b: δB(a) ≤
⌊
δB(a)

2

⌋
. It is now easy to find examples of even

n, bases B and numbers a with
⌊
n−4
2

⌋
digits that cannot be divided by any

number b ≤ a. If n = 8, then considering numbers a with δB(a) = 2 digits the
only possible divisors resulting in a division using only 8 columns are one-digit
numbers. Taking e.g. B = 10 it is easy to see that the division of a = 21 by
all one-digit numbers requires at least 9 columns. If n = 10, then considering
numbers a with δB(a) = 3 digits the only possible divisors resulting in a division
using only 10 columns are also one-digit numbers. Taking e.g. B = 10 it is easy
to see that the division of a = 297 by all one-digit numbers requires at least
11 columns. Since for n = 8 and n = 10 the only critical number of digits is⌊
n−4
2

⌋
we conclude that there exist numbers a with a critical number of digits

for which the calculation a : b cannot be performed for any b. Another example
for even n is the case n = 12, B = 2, a = (1001)2. In this case the only possible

divisors b with δB(b) ≤
⌊
δB(a)

2

⌋
are 1, (10)2 and (11)2 and it is easy to check

that the division of a by any of these divisors requires 13 columns.
Because of these problems we shall now restrict ourselves to abaci with 9 or

at least 11 rods and to the identification of maximal divisors for numbers a with
the minimal critical number Nn of digits.

Lemma 4 To divide a number with k digits by a number with the same number
of digits the abacus has to have at least 3k + 4 rods. In particular, a number
with a critical number of digits cannot be divided by any number with the same
number of digits.

Proof. The division of a number by another one with the same number of
digits necessary yields a one-digit quotient (this is a consequence of Lemma 1).
Since the only partial product in this case has at least the value of the divisor
and at most the value of the dividend, we need the same number k of columns
for representing it. This means that for the calculation one needs exactly 4+3k
columns.

If k ≥ Nn, we conclude that for dividing a k-digit number by a k-digit num-
ber one needs at least 4 + 3Nn = 7 + 3

⌊
n−4
3

⌋
columns. Using equation (1) it is

easy to see that this number is always greater than n. �

Thus the largest number that a Nn-digit number can be divided by has at
most Nn − 1 digits. In many, but not in all, cases it is possible to perform the
division of a Nn-digit number by a (Nn − 1)-digit divisor. Let a be a number
with Nn digits and b a number with one digit less. Because of Lemma 1 we
know that the integer quotient of a by b has 1 or 2 digits. In the first step of the
division we obtain the first (and possibly the last) digit of the quotient and the
partial product is necessarily nonzero. For this step we need 3Nn+2 or 3Nn+3
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columns, depending on if the partial product has the same number of digits as
b has or one more. Because of equation (1), we conclude that for determining
the first digit of the quotient we need at most 3m = n columns if n = 3m, at
least 3m + 2 > n columns if n = 3m + 1 and either 3m + 2 = n or one more
columns if n = 3m+ 2. So we conclude:

Proposition 5 If n ≡ 1(mod 3) then it is not possible to divide a number with
Nn digits with any number with Nn−1 digits. In particular, it is not possible to
divide any four-digit number with any three-digit number on the classical 13-rod
abacus.

We shall continue to consider separately the three possible cases in three
separate subsections. In all of the three subsections we assume δB(a) = Nn.

5.1 Maximal divisors for Nn-digit numbers on abaci with
n ≡ 0(mod 3) rods

As we have seen, on abaci with n = 3m ≥ 9 rods it is always possible to obtain
the first digit of the result a : b for δB(b) = Nn − 1. Since we are searching for
the maximal divisor, we are primarily interested in quotients that have only one
digit and so we check the division of such numbers a by the maximal (Nn − 1)-
digit number

b∗ = BNn−1 − 1.

The division a : b∗ can be performed if the integer quotient has one digit. The
quotient of a by b∗ has two digits only if a ≥ Bb∗ = BNn − B. But, there are
only B such numbers a. Since b∗ > B − 1 (n ≥ 9 implies that δB(b) is at least
2) the division theorem implies that for a ≥ Bb∗ we have ba : b∗c = B = (10)B .
Consequently the second partial product must be zero and for these divisions
we need 3 +Nn +Nn− 1 + 2 + 1 = 2Nn + 5 columns. As n = 3m ≥ 9, equation
(1) implies that we need 2m+ 3 ≤ 3m columns. For all m ≥ 3 this condition is
fulfilled and the division can be performed. Thus we have proven

Theorem 3 If n ≡ 0(mod 3) then the largest divisor b of an Nn-digit number
a such that a : b can be computed on a n-rod abacus is the largest (Nn− 1)-digit
number b∗ = BNn−1 − 1.

Note that this does not imply that all a with Nn digits can be divided by
all b with Nn − 1 digits (but a can be divided with all b with at most Nn − 2
digits: if b has p digits, the division requires at most 2Nn+5+p digits, and this
is at most 2Nn + 5 + Nn − 2 = 3m = n). For example, if n = 15, i.e. Nn = 4.
The number 9989 can be divided by 999 (quotient 9 and partial product 8991,
altogether this makes 15 columns), but the division of 9989 by 112 yields 89 as
the quotient and the last partial product is 9 · 112 = 1008, so the calculation
would need 16 columns.

As is obvious from the considerations above, the calculation of a : b (for
δB(a) = Nn and δB(b) = Nn − 1) is not feasible if the integer quotient ba : bc
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has two digits and the last partial product has more digits than b i.e. when
ba : bc ≥ B and q0b ≥ BNn−1, where q0 denotes the last digit of ba : bc. This
cannot happen if q0 = 0 or q0 = 1 (in particular, if B = 2 the division is
always possible!). Otherwise we have the (necessary and sufficient) condition:

b < BNn−1

q0
. Since q0 ≤ B − 1 we conclude

Proposition 6 If n ≡ 0(mod 3) then a Nn-digit number a can be divided by all

b < BNn−1

B−1 . In particular, for binary calculations such an a can be divided by
all (Nn − 1)-digit numbers b.

As conditions similar to the one above the previous proposition shall appear
in the subsequent subsections, we formulate the following lemma:

Lemma 5 If q∗ is a one-digit number, i.e. q∗ ∈ {1, 2, . . . , B − 1}, and b has
δB(b) digits, then the product q∗ · b has δB(b) digits if and only if

b <
BδB(b)

q∗
.

Otherwise the product has δB(b) + 1 digits.

5.2 Maximal divisors for Nn-digit numbers on abaci with
n ≡ 1(mod 3) rods

As we have seen, the divisors in this case can have at most Nn − 2 digits. For
a given a, with δB(a) = Nn = m (if n = 3m + 1), we want to determine1

bmax(a). Note also that m ≥ 4 since we restricted ourselves to abaci with 9
or at least 11 rods, so the smallest n ≡ 1(mod 3) we are considering in this
section is n = 13. We consider only (unless otherwise necessary) divisors b with
δB(b) = Nn − 2 = m− 2. The maximal such number b shall be denoted b∗:

b∗ = BNn−2 − 1 = Bm−2 − 1.

By Lemma 1, the quotients q = ba : bc will have two or three digits. The first
calculation step needs at most 3 + Nn + Nn − 2 + 1 + Nn − 1 = n columns,
so we can always determine the first digit of the result. The second step needs
either 2Nn + 4 < n (if the second digit of the quotient is zero), 3Nn + 1 = n or
n+ 1 columns; the last, problematic, case appears if the product of b with the
second digit of the quotient has more digits than b, i.e. the partial product is at
least BNn−2. This cannot happen if the second digit of the quotient is 0 or 1,
in particular it cannot happen in binary calculations. If the second digit is 2 or
larger, then b has to meet the condition from Lemma 5 (where q∗ is the second
digit of the quotient and δB(b) = Nn − 2). If needed, the third step requires
one column more for the quotient and thus either 2Nn + 5 < n columns (if the
third digit of the quotient is 0), or at least 3Nn + 2 > n columns. So, if the
quotient has three digits, then it can be calculated if and only if the last digit
is zero. We summarize this as

1The number bmax(a) depends not only on a, but also on B.
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Proposition 7 If n = 3m + 1 for some m ∈ N (m ≥ 4), δB(a) = m and
δB(b) = m − 2, then the calculation of the integer quotient q of a by b on a
n-rod abacus is not feasible if the product of b with the second digit of q is at
least Bm−2 or if q has three digits and the last one is not zero. If B = 2 the
calculation is always possible, except for the cases when the quotient has three
digits the last of which is 1.

If B = 2 the only case when bmax(a) 6= b∗ happens if the quotient is a
three-digit binary number such that the last digit is 1. It can easily be seen by
inspection of the possible cases for m > 4 and separately for m = 4 that the
only case when ba : b∗c cannot be calculated is for a = (1111)2. By checking
the possible divisors b for this a it is easily seen that bmax((1111)2) = 1.

Proposition 8 For binary calculations on an abacus with n = 3m + 1 ≥ 13
rods for all a with m digits the maximal number b such that the integer quotient
of a by b can be calculated is b∗, except for m = 4 and a = (1111)2, in which
case the maximal divisor is 1.

In the following we shall suppose that B > 2. As we want to determine the
maximal b, we would prefer larger b, i.e. smaller quotients. Let us first consider
the case when there exists a b such that the integer quotient q = ba : bc has two
digits. Since the smallest quotients of a given a we get for the largest b, and
that is b∗, if we are sure that no quotient of a by b∗ can have 0 or 1 as the last
(second) digit, then a cannot be divided on a n-rod abacus by any b that results
in a two-digit quotient. Now, the quotient q has to have the last digit greater
than 1 if q is greater than or equal to (B− 1 2)B = (B− 1)B+ 2 = B2−B+ 2.
It follows that for

a ≥ (B2 −B + 2) · b∗ = Bm −Bm−1 + 2Bm−2 −B2 +B − 2 = a

it is not possible to divide a by any of the b with m − 2 digits that yield a
quotient with two digits (the smallest such quotient would be B2−B+2, i.e. all
possible two-digit quotients have the last digit greater than 1). We summarize
this as

Lemma 6 If a ≥ a, then none of the integer quotients of a by a (m − 2)-digit
divisor b has two digits.

This means that for a ≥ a we have to search for the maximal divisor bmax(a)
among those yielding three-digit quotients. Note also that for m = 4 (i.e.
n = 13) a = (B − 1)Bm−1 +Bm−2 + (B − 2) = (B − 1 1 0 B − 2)B . For larger
n,

a = (B − 1)Bm−1 +Bm−2 +Bm−2 −B2 + (B − 2) =

= (B − 1 1 B − 1 B − 1 . . . B − 1 0 B − 2)B .

For example, if B = 10 then for n = 13, 16, 19, 22, 25, . . . we get the following
values of a: 9108, 91908, 919908, 9199908, 91999908, . . .

13



Let us determine bmax(a) for a given a, a ≥ a. Since all quotients have three
digits, if there exists a b < Bm−2 such that ba : bc = B2 (the smallest three-digit
number: B2 = (100)B), then bmax(a) = b.

Lemma 7 For n ≡ 1(mod 3), if a ≥ a and ba : B2c > a − B2ba : B2c then
bmax(a) = ba : B2c.

Proof. If ba : bc = B2, the division theorem implies that a = bB2 + r with
r < ba : B2c. Thus a− bB2 < ba : B2c. �

Which a ≥ a fulfil the condition from the lemma? Except in the case n = 13,
all do! Namely, if a = (akak−1 . . . a2a1a0)B , then ba : B2c = (akak−1 . . . a2)B
and B2ba : B2c = (akak−1 . . . a200)B , and thus

a−B2ba : B2c = (a1a0)B < (akak−1 . . . a2)B

if k = 1 +Nn ≥ 4, i.e. if n ≥ 16, n ≡ 1(mod 3). Thus the only complicated case
is n = 13.

If n = 13, all of the numbers a ≥ a = (B− 1 1 0 B− 2)B fulfil the condition
from the previous lemma except for the numbers a = (B − 1 a2a1a0)B with
the property (B − 1 a2)B ≤ (a1a0)B . These are exactly the numbers a with
the property that the remainder of the division a : B2 is not smaller than the
quotient. For these numbers there is no two-digit divisor b (m − 2 = 2 in this
case) such that ba : bc = B2. In the paper [4, pp. 83-84] the case B = 10 was
solved.

We shall now show that there is a similar way to determine bmax(a) for
bases B > 2. According to the previous discussion, we have to determine
bmax(a) for numbers a that are of the form (B − 1 0 B − 1 0)B + 101i + j
for 1 ≤ i ≤ B − 3 and 0 ≤ j ≤ B − (i + 1), and for numbers a in the three-
element set S = {(B − 1 B − 2 B − 1 B − 2)B , (B − 1 B − 2 B − 1 B − 1)B ,
(B − 1 B − 1 B − 1 B − 1)B}.

Proposition 9 If a = (B − 1 0 B − 1 0)B + 101i+ j, 1 ≤ i ≤ B − 3, 0 ≤ j ≤
B − (i+ 1), then bmax(a) = (B − 2) ·B + i+ 2 = (B − 2 i+ 2)B.

Proof. It suffices to prove that ba : (B − 2 i+ 2)Bc = (110)B , i.e.

B2 +B ≤ B4 −B3 + (i+ 1) ·B2 −B + i+ j

(B − 2) ·B + i+ 2
< B2 +B + 1

for all 1 ≤ i ≤ B − 3 and 0 ≤ j ≤ B − (i + 1). This is easy to check by direct
calculation. �

Proposition 10 For a ∈ S the number bmax(a) is the largest number b such
that B ≤ b < B2 and ba : bc = (i j 0)B, where 0 < j ≤ i ≤ B − 1, if such a
number b exists. Otherwise bmax(a) is equal to the largest number b′, b′ ≤ B−1,
such that b′ · q0 < B, where q0 denotes the last digit of the number ba : b′c.
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a B bmax(a)
6565, 6566 7 5
6666 7 6
7676, 7677 8 1
7777 8 42
8787, 8788 9 1
8888 9 28
9898, 9899 10 47
9999 10 9

Table 1: Values of bmax(a) for some cases of a ∈ S.

Proof. It can be shown similarly as before that there is no number b with the
property that ba : bc is of the form (i 0 0)B . If there exist a number b as in the
first statement of the proposition, it is obvious that a can be divided by b on a
13-rod abacus (because both partial products have at most two digits).

To finish the proof of the first part of the proposition we have to check that
a cannot be divided by b if ba : bc = (i j 0)B , j > i. Namely, if we suppose that
this division is feasible, the product b · j would be smaller than B2. This is not
possible if b ·i ≥ (B−1 B−2)B . The inequality b ·i < (B−1 B−2)B < b ·(i+1)
implies b · j = (B − 1 B − 1)B and j = i+ 1. Since in the first partial division
we have obtained the integer quotient i, the remainder in this division is b− 1.
Since (B − 1 B − 1)B is divisible by b, we get B ≤ b − 1. The second digit of
the quotient (i.e., j) we obtain by the division of (b − 1 B − 1)B by b. We get
j = B − 1 because (b − 1 B − 1)B + 1 = (b 0)B . In the same way we get that
the third digit of the quotient cannot be zero (it is in fact equal to B − 1) and
we have obtained a contradiction with our presumption.

The second part of the proposition is now obviously valid, noting that such
a number b′ always exists and is in the worst case equal to 1. �

Table 1 shows a few interesting examples.
Now let us turn to numbers a < a (for B > 2). For such numbers there is

at least one b with δB(b) = Nn − 2 such that ba : bc has two digits. The nec-
essary and sufficient condition that the calculation is performable is contained
in Lemma 5 (with q∗ being the second digit of the quotient ba : bc). There are
two cases when the maximal b such that the division is possible is equal to b∗;
these two cases are contained in the following two lemmas. We first introduce
some additional notation: a = (B + 2)b∗ and ã = (B2 −B)b∗.

Lemma 8 Let n be the number of rods on the abacus, n = 3m+ 1, B ≥ 3 and
a be a number smaller than a. If a < a or a ≥ ã, then a can be divided by b∗,
i.e. b∗ is the maximal divisor b such that a can be divided by b on the abacus.

Proof. If a < a, the integer quotient ba : b∗c has two digits. In fact, the
largest possible integer quotient of such a number a by b∗ is b(a − 1) : b∗c =
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b((B2 −B + 2)b∗ − 1) : b∗c = B2 −B + 1 = B(B − 1) + 1 = (B − 1 1)B .
Now, for a < a, because a is a multiple of b∗ we obtain the following sharp

inequality: ba : b∗c < ba : b∗c = B + 2. Thus ba : b∗c = B or ba : b∗c = B + 1,
so the second and last digit of the quotient of a by b∗ is 0 or 1 and a can be
divided by b∗.

On the other side, if a ≥ ã, then ba : b∗c ≥ B2 − B = (B − 1 0)B . Since
the largest possible quotient is (B− 1 1)B , for such numbers a the only possible
quotients with b∗ are (B − 1 0)B and (B − 1 1)B , so we can again conclude that
the division is possible. �

The numbers a such that a ≤ a < ã can be divided in two classes:

I = {a : iBb∗ ≤ a < (iB + 2)b∗, i = 2, 3, . . . , B − 2}

and
II = {a : (iB + 2)b∗ ≤ a < (i+ 1)Bb∗, i = 1, 2, . . . , B − 2}.

For all numbers a of the form described as class I the largest divisor is b∗:

Lemma 9 Let n be the number of rods on the abacus, n = 3m+ 1, B ≥ 3 and
a be a number such that a ≤ a < ã. If there exist integers i and j such that
a = iBb∗+ j, i ∈ {2, 3, . . . , B− 2} and j ∈ {0, 1, . . . , 2b∗− 1}, then the maximal
divisor b such that a can be divided by b on the abacus with n rods is b∗.

Proof. If a can be represented in the form a = iBb∗ + j with i and j as de-
scribed in the statement of the lemma, then either a = iBb∗ + j with j < b∗

or a = iBb∗ + b∗ + j′ = (iB + 1)b∗ + j′ with j′ < b∗. In the first case we have
ba : b∗c = iB = (i 0) and in the second ba : b∗c = iB + 1 = (i 1), so in both
cases the last digit of the quotient is 0 or 1 and the division of a by b∗ is feasible.�

Before we continue, note that for numbers a ∈ II the maximal divisor cannot
be b∗. Namely, for a ≥ a and b ≤ b∗ we have ba : bc ≥ ba : b∗c = B+2 = (1 2)B .
Thus for a ∈ II we have

ba : b∗c ∈ {B + 2, B + 3, . . . , B2 −B − 1}\{iB, iB + 1 : i = 2, 3, . . . , B − 2} =

= {(1 2)B , (1 3)B , . . . , (B−2B−1)B}\{(2 0)B , (2 1)B , . . . , (B−2 0)B , (B−2 1)B},

i.e. the second digit of the quotient is larger than 1 and so the last partial
product of the division by b∗ must be larger than b∗. In class II we shall show
that the largest divisor is the number

b\ =

 a⌈
ba:b∗c
B

⌉
B

 . (2)

Although the formula seems complicated, the idea behind it is quite simple: We
check the number ba : b∗c and now we decrease the divisor downwards starting
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with b∗−1 until we find the first b (that is our b\) such that the integer quotient
of a by b is a two-digit number with the second digit equal to zero, i.e. ba : bc
is a multiple of B and it is the smallest multiple of b less than ba : b∗c.

To prove that bmax(a) = b\ for a ∈ II we have to prove that a can be divided
by b\ and that there is no larger b (b\ < b ≤ b∗ − 1) such that a can be divided

by b on an abacus with n = 3m+ 1 rods. Denote by k =
⌈
ba:b∗c
B

⌉
the smallest

integer k such that ba : b∗c ≤ kB = (k 0)B . Since a ∈ II there exists some
i ∈ {1, 2, . . . , B − 2} such that (iB + 2)b∗ ≤ a < (i + 1)Bb∗. By the definition
of k we have i+ 1 = k and

(k − 1)B <
a

b∗
< kB.

Lemma 10 Let a ∈ II and suppose (iB + 2)b∗ ≤ a < (i + 1)Bb∗, for some

i ∈ {1, 2, . . . , B − 2}. Then a ∈ II can be divided by b\ =
⌊

a
(i+1)B

⌋
. The

corresponding quotient ba : b\c is equal to (i+ 1)B = (k 0)B and thus b\ is the
largest b such that ba : bc = (i+ 1)B.

Proof. The quotient theorem implies that a can be represented in the form
a = p(i+ 1)B + r, with 0 ≤ r < (i+ 1)B. Obviously p = b a

(i+1)B c. If we show

that p > r, the same theorem implies that ba : b\c = (i + 1)B = (k 0)B . It is
sufficient to show that a ≥ (i+ 1)2B2, because this implies p ≥ (i+ 1)B.

As a is at least (iB + 2)b∗, it is sufficient to check that (i + 1)2B2 <
(iB + 2)(B2 − 1). Note that (iB + 2)(B2 − 1) > iB3 and (i + 1)2B2 < iB3

for i < B − 2. In the case i = B − 2, the required inequality is obtained by
direct calculation. �

Now let us suppose that there is a b > b\ such that a can be divided by b
on our abacus. Since we have shown that b\ is the largest divisor b such that
ba : bc = kB we conclude that for b > b\ we have ba : bc ≤ (k−1 B−1)B . On the
other side, b < b∗ and our choice of k implies that (k− 1)B + 2 < a : b∗ < a : b.
Thus ba : bc has to be one of the B − 1 numbers (k − 1 2)B , (k − 1 3)B , . . . ,
(k − 1 B − 1)B . Now, it is enough to show that 2b\ ≥ b∗, because this would
imply 2b > b∗ so all of the possible quotients result in a too large second partial
product and then we can conclude that a cannot be divided by any b > b\.

Lemma 11
2b\ ≥ b∗.

Proof. We have ((k − 1)B + 2)b∗ ≤ a < kBb∗ and thus

b\ =
⌊ a

kB

⌋
≥
⌊

(k − 1)B + 2

kB
· b∗
⌋
.

It is easy to see by elementary calculus that the function f : R+ → R, f(x) =
(x−1)B+2

xB = 1− B−2
xB is increasing and has the line y = 1 as a horizontal asymp-

tote. Consequently, 1 > f(k) ≥ f(2) = 2+B
2B > 1

2 for all k.
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Now, if B is odd, i.e. b∗ is even, we have

b\ ≥
⌊
b∗

2

⌋
=
b∗

2
.

On the other side, if B is even and thus b∗ is odd,

b\ ≥
⌊
B + 2

2B
· b∗
⌋

=

⌊
Bm−2

2
+Bm−3 − B + 2

2B

⌋
==

Bm−2

2
+Bm−3 − 1 >

b∗

2
.

�

The previous two lemmas imply that the formula (2) is valid, i.e. we have
proven

Proposition 11 Let n ≥ 13 be the number of rods on the abacus, n = 3m+ 1,
and B ≥ 3. For a ∈ II

bmax(a) = b\ = ba : (kB)c,

where k is the largest of the numbers 2, 3, . . . , B − 1 such that ba : b∗c ≤ kB.

We summarize the previous results as

Theorem 4 Let n ≥ 13 be the number of rods on the abacus, n = 3m+ 1 and
B ≥ 3. Let a be a number such that δB(a) = Nn and b∗ = BNn−2 − 1.

(a) If a ≥ (B2 − B + 2) · b∗ then bmax(a) = ba : B2c, except if n = 13 and a
is of the form a = (B − 1 a2a1a0)B and (B − 1 a2)B ≤ (a1a0)B. If this
is the case, the value of bmax(a) is determined either by Proposition 9 or
Proposition 10.

(b) If a < (B+2)b∗ or (B2−B)b∗ ≤ a < (B2−B+2)b∗ or if there exists some
i ∈ {2, 3, . . . , B− 2} such that a ∈ {(i− 1 B− 1 B− 1 . . . B− 1 B− i 0),
(i−1 B−1 B−1 . . . B−1 B− i 1), (i−1 B−1 B−1 . . . B−1 B− i 2),
. . . , (i 1 B − 1 . . . B − 1 B − (i+ 1) B − 3)}, then bmax(a) = b∗.

(c) In all other cases bmax(a) = b\ = ba : (dba : b∗c : BeB)c.

5.3 Maximal divisors for Nn-digit numbers on abaci with
n ≡ 2(mod 3) rods

In this subsection we assume that n = 3m + 2 with m ≥ 3, δB(a) = Nn = m
and (unless otherwise stated) δB(b) = Nn − 1 = m − 1. The maximal number
Bm−1 − 1 with m − 1 digits shall be denoted by b∗. The integer quotient
q = ba : bc has either one or two digits. The first division step needs either
3 +Nn+Nn−1 + 1 +Nn−1 = n or n+ 1 columns, so we get the first condition

for the division to be feasible: b < Bm−1

q1
, where q1 denotes the first (and possibly

only) digit of q. If needed, the second step requires either 2Nn + 5 < n columns
(if the second digit of q is zero) or at least 2Nn+ 4 +Nn−1 > n columns. Thus
we have a second condition: if q ≥ B, then the second digit of q has to be zero.
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Lemma 12 All integer quotients q = ba : b∗c, where a has m digits and b∗ =
Bm−1 − 1, are smaller than (11)B = B + 1.

Proof. If q ≥ B + 1 then qb∗ ≥ Bm +Bm−1 −B − 1 > Bm for all B ≥ 2 and
m ≥ 3. In particular it is impossible for an m-digit number to be of the form
qb∗ + r with q ≥ B + 1 and r ≥ 0. �

For binary calculations this amounts to: the smallest quotient for which the
calculation cannot be performed is q = (11)2 = 3. The previous lemma implies
that this cannot happen, i.e. for B = 2 and n = 3m+ 2, for numbers a with m
digits we have bmax(a) = b∗.

Now we turn to bases B > 2. The conditions stated above for the division
to be performable imply that the only cases when bmax(a) 6= b∗ arise when
q1b
∗ ≥ Bm−1 or if there is a second digit in q that is not zero. Because of the

previous lemma, the maximal possible two-digit quotient ba : b∗c is (10)B , so
in fact we have only one condition: the first partial product has to have m− 1
digits. The possible quotients of a by b∗ are 1, 2, . . . , B. If q = 1 or q = B, the
division is feasible, i.e. for a < 2b∗ and for a ≥ Bb∗ we have bmax(a) = b∗. For
a ∈ {2b∗, . . . , Bb∗−1} the first partial product is at least 2b∗ > Bm, so bmax(a) 6=
b∗. Also, it is impossible to obtain q = 1 in the division of a ∈ {2b∗, . . . , Bb∗−1}
by a number b < b∗ (a = 1 · b + r would imply that a < 2b∗, contrary to our
assumption). Since we want the largest b, i.e. the smallest possible q, we now
check if there are performable divisions of a ∈ {2b∗, . . . , Bb∗ − 1} by b such
that q has one digit. In such a case b must meet the condition qb < Bm−1 and
thus 2b∗ ≤ a = qb + r < (q + 1)b < q+1

q Bm−1. The last inequality implies

that Bm−1 < 2q
q−1 . Since m,B ≥ 3 we have Bm−1 ≥ 32 = 9, so the only

possibilities for a division of a by b to be performable would be in the cases
when 9 < 2q

q−1 , i.e. when 7q < 9, which is impossible for q ≥ 2. Thus there are
no cases where a ≥ 2b∗, q has only one digit and the division is performable.
Because of the previous lemma, the only possibility for a division of a number
a ∈ {2b∗, . . . , Bb∗− 1} by a number b with m− 1 digits to be performable is the
case when q = (10)B = B.

Let now a be any m-digit number in the set {2b∗, . . . , Bb∗ − 1}. If there
is a b with m − 1 digits such that a = Bb + r, 0 ≤ r < b, then this b is the
searched for maximal divisor. Set b = b aB c. Obviously this b fulfils the equality
a = Bb + r, so we only have to check that b has one digit less than a. But,
dividing any number a = (am−1 . . . a2a1a0)B by B results in the integer quotient
b = (am−1 . . . a2a1)B with m− 1 digits. So we have proven

Theorem 5 Let n = 3m + 2 ≥ 11 be the number of rods on the abacus. Let
a be a number with Nn = m digits and let b∗ = BNn−1 − 1 be the maximal
(Nn − 1)-digit number. The maximal divisor b such that the division of a by b
on an abacus with n rods can be performed is:

(a) b∗ if a < 2b∗ or a ≥ Bb∗ or

(b) ba : Bc otherwise.
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Matematika i Škola (to appear)

Franka Miriam Brueckler
Department of Mathematics, University of Zagreb
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